本篇文章给大家分享半桥llc开关电源设计,以及半桥开关电源电路原理对应的知识点,希望对各位有所帮助。
对中小功率开关电源来说是实现单片集成化,但在大功率应用领域,因其功率损耗过大,很难做成单片集成,不得不根据其拓扑结构在保证电源各项参数的同时尽量缩小系统体积。
开关电源是利用现代电力技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
为了减少各个控制芯片间的相互干扰,控制地***用单点信号地系统。控制地只通过驱动地和功率地相连,也就是控制地只和开关管的源极相连。但是,实际上驱动电路有较大的脉冲电流,最好的做法是***用变压器隔离驱动,让功率电路和控制电路的地彻底分开。
与传统PWM(脉宽调节)变换器不同,LLC是一种通过控制开关频率(频率调节)来实现输出电压恒定的谐振电路。它的优点是:实现原边两个主MOS开关的零电压开通(ZVS)和副边整流二极管的零电流关断(ZCS),通过软开关技术,可以降低电源的开关损耗,提高功率变换器的效率和功率密度。
问题八:什么是逆变器的拓扑结构 目前***用的逆变器拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可***用多电平逆变拓扑,中等功率光伏并网逆变器多***用全桥、半桥逆变拓扑,小功率光伏并网逆变器***用正激、反激逆变拓扑。
用门驱动变压器驱动即可,全桥的话,使开关管成对角线交替开关;半桥则让两个管子交替开关。全桥可以移相控制,说起来比较复杂。
从原理图来看,我们可以直观地分辨出两者:左边是半桥结构,它依赖于两个开关管的协同工作,每个管子在接收到驱动脉冲时,会交替进行开/关操作。当上管开启时,下管则关闭,电流的流动路径是这样的:开关管--变压器--电容--回到0V。
原理图就是这样,左边是半桥,右边是全桥,可以看出半桥需要两个开关管,每个驱动脉冲开关管各开/关一次,上管开时下管关,电流回路是开关管--到变压器---到电容到--0V。下管开时上管关,电流回路是电容--变压器--开关管--0V。变压器得到的电压是半电源电压。
LLC电路的核心特性包括变频控制、固定的50%占空比、高效能和低输出电压波动,为小型化设计带来了革命性的突破。深入剖析其工作原理,LLC电路通过傅立叶分析,我们可以看到电压增益M受到频率fn、品质因数Q以及电路参数λ的影响。调整fn,可以实现对输出电压的精确控制。
在现代开关电源设计中, LLC谐振半桥电路凭借其独特的技术优势脱颖而出。它摒弃了传统磁性元件的高损耗,通过ZVS(零电压开关)和ZCS(零电流开关)技术实现了高效节能。其核心原理是利用串联谐振电路在电流和电压过零点时消除开关损耗,实现变频控制与固定50%占空比,确保低恢复损耗和高效率。
LLC谐振电路利用电感电容串联或并联形成谐振回路,在直流电源作用下,电路中电流呈现正弦规律变化,存在过零点。在开关器件位于过零点时开通或关断,可实现零损耗。接下来分析广泛使用的LLC谐振半桥电路。基本电路结构包括Cr、Lr、Lm构成谐振腔(Resonant tank),Cr隔离直流电,同时平衡变压器磁通,防止饱和。
LLC谐振半桥电路是为实现软开关技术,降低损耗并优化开关电源设计的关键。它通过利用电感电容的串联或并联谐振原理,使电流在直流电源下按正弦规律变化,从而在过零点实现零损耗开关。其基本电路由Cr、Lr和Lm构成,其中Cr确保无直流转移并平衡磁通,Lr和Lm形成谐振腔(LLC谐振)。
LLC谐振转换器是高功率应用中的常见设计,本文将详细指导前9个步骤,以帮助您设计一个半桥拓扑的LLC转换器。首先,确定系统规格,包括估算效率和最小输入电压,以满足保持时间要求。接下来,计算谐振网络的电压增益范围,确保在不同输入电压下转换器能稳定工作。
1、正激式开关电源:其拓扑结构与反激式相似,但在本质上存在差异。变压器在这种设计中仅起到电气隔离的作用,并且电路中的变压器工作点始终位于磁化曲线的第一象限,这导致其未能充分利用磁芯的潜力。
2、全桥和半桥都是双击式的,相当于两个正激电路的组合。正激和反击是以输出是利用开关管导通时输出还是开关管截止时输出,跟开关管的数量没有必然关系。
3、正激式:拓扑结构形式和反激式变换器相似,虽然磁芯也是单向磁化,却存 在着严格意义上的区别,变压器仅起电气隔离作用,而且电路变压器的工作点 仅处于磁化曲线的第1象限,没有得到充分的利用,因此同样的功率,其变换器 体积、重量和损耗大于半桥式、全桥式、推挽式变换电路。
在开关电源的设计中,两种常见的电路结构是全桥和半桥,它们都属于双极型电路,可看作是两个正激电路的集成。正激和反击的分类依据在于输出电流何时通过开关管,而非开关管的数量。半桥电路的独特之处在于将桥式整流的两个二极管合并,通过这种方式,两个半桥可以组合成一个完整的桥式整流电路。
主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。这种电路结构通常使用在1KW以上超大功率开关电源电路中。
开关电源的占空比是动态的,随负载而变,空载时总是接近0,负载越重,占空比越大。半桥式开关电源由于有两臂驱动,占空比不同资料的提法有点乱。有的按单臂来计,有的按双臂的总和来计。以***用TL494的为例,单臂最大占空比为48%,双臂总和的最大占空比为96%。
1、初级线圈 n1=220╳8=2156匝 次级线圈 n2=8╳8╳05=832 可取为82匝 次级线圈匝数计算中的05是考虑有负荷时的压降 3,求导线直径 你未说明你要求输出多少伏的电流是多少安?这里我假定为8V.电流为2安。
2、在频率50Hz的交流电源变压器的计算:铁芯截面积=功率的平方根*25,匝数=铁芯截面积*磁通密度/电压,线截面积=电流/2-3。例如:变压器初级电压220V,次级电压12V,功率为100W,求初、次级匝数及线径。
3、半桥式开关电源变压器的计算方法与前面推挽式开关电源变压器的计算方法基本相同,只是直接加到变压器初级线圈两端的电压仅等于输入电压Ui的二分之一。
4、计算公式:N=0.4(l/d)开次方。(其中,N一匝数, L一绝对单位,luH=10立方。d-线圈平均直径(Cm) 。)例如,绕制L=0.04uH的电感线圈,取平均直径d= 0.8cm,则匝数N=3匝。在计算取值时匝数N取略大一些。这样制作后的电感能在一定范围内调节。
5、Np=(Vdc-1)(0.8T/2)×10*8/AedB Np:初级匝数; Vdc:最小直流输入电压;T:工作周期;Ae:磁芯面积;dB=1600G。
关于半桥llc开关电源设计和半桥开关电源电路原理的介绍到此就结束了,感谢你花时间阅读本站内容,更多关于半桥开关电源电路原理、半桥llc开关电源设计的信息别忘了在本站搜索。
上一篇
多路输出电压的开关电源设计
下一篇
空调的空气开关装多大的